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Tomato was one of the first plant species to be evaluated
using metabolomics and remains one of the best character-
ized, with tomato fruit being both an important source of
nutrition in the human diet and a valuable model system for
the development of fleshy fruits. Additionally, given the
broad habitat range of members of the tomato clade and
the extensive use of exotic germplasm in tomato genetic
research, it represents an excellent genetic model system
for understanding both metabolism per se and the import-
ance of various metabolites in conferring stress tolerance.
This review summarizes technical approaches used to char-
acterize the tomato metabolome to date and details insights
into metabolic pathway structure and regulation that have
been obtained via analysis of tissue samples taken under
different developmental or environmental circumstance as
well as following genetic perturbation. Particular attention is
paid to compounds of importance for nutrition or the shelf-
life of tomatoes. We propose furthermore how metabolo-
mics information can be coupled to the burgeoning wealth
of genome sequence data from the tomato clade to enhance
further our understanding of (i) the shifts in metabolic regu-
lation occurring during development and (ii) specialization
of metabolism within the tomato clade as a consequence of
either adaptive evolution or domestication.

Keywords: Fruit ripening � Metabolomics � Primary metab-
olite � Secondary metabolite � Tomato metabolism.

Abbreviations: FT-ICR, Fourier transform ion cyclotron
resonance; GC-MS, gas chromatography–mass spectrometry;
IL, introgression line; ILH, line heterozygous for the introgres-
sion; LC-MS, liquid chromatography–mass spectrometry;
MALDI, matrix-assisted laser desorption ionization;
MS, mass spectrometry; NMR, nuclear magnetic resonance;
qPCR, quantitative real-time PCR; QTL, quantitative trait
locus; RNA-seq, RNA sequencing; TILLING, targeting induced
local lesions in genomes; TOF-MS, time-of-flight-mass spec-
trometry; UPLC, ultra-performance liquid chromatography;
VIGS, virus-induced gene silencing.

Introduction

Tomato, Solanum lycopersicum, a member of the Solanaceae
family, has long been cultivated. It and its wild relatives origin-
ate from the Andean region of South America, and cherry
tomato (S. lycopersicum var cerasiforme) which was probably
domesticated from S. pimpinellifolium (Ranc et al. 2012), was
the likely ancestor of modern-day cultivars. In the 16th century
the conquistadors brought tomatoes to Europe, and subse-
quent migration and extensive selection considerably reduced
the diversity of the crop (Lin et al. 2014). Today tomato is
considered the leading vegetable crop, with a global yield in
excess of 160 Mt in 2012 (http://faostat.fao.org/), with a net
value of >US$55 billion (Vincent et al. 2013). It is also a model
system for understanding fleshy fruit development (Klee and
Giovannoni 2011), with massive recent progress being made
towards understanding the gene regulatory circuitry
(Rohrmann et al. 2011, Seymour et al. 2013, Karlova et al.
2014) and metabolic shifts (Carrari and Fernie 2006, Tohge
et al. 2014) underlying this process. In addition to these import-
ant features, looking beyond the domesticated species, wild
species tomato have adapted to highly diverse habitats, with
different members of the clade being able to grow in arid
desert-like conditions while others grow in the tropical rainfor-
est (Peralta et al. 2008). Breeders and plant geneticists have
started to tap this diversity as a means to re-introduce biotic
and abiotic stress tolerance (Zamir 2001, Takeda and Matsuoka
2008, Frary et al. 2010) and fruit size and shape variation
(Frary et al. 2000, Tanksley 2004). This approach has also
been used, in parallel to transgenic approaches (Frary et al.
2000, Tieman et al. 2010), as a means by which to engineer
metabolite content (Mutschler et al. 1996, Fridman et al.
2004, Schauer et al. 2006, Schilmiller et al. 2010, Perez-Fons
et al. 2014). In this review, we will highlight how metabolomics
has been brought to bear to address fundamental questions in
each of these important research areas. However, before we
do so, we will provide a brief technical overview of the meta-
bolic profiling methods currently employed in research in
tomato (Fig. 1).
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Technical Approaches to Assess the
Metabolome

While the ultimate goal of metabolomics is the quantification
of the entire metabolomic complement of an organism, current
approaches fall some way short of this. It has been estimated
that the plant kingdom contains >200,000 metabolites (Dixon
and Strack 2003, Fernie et al. 2004, Yonekura-Sakakibara and
Saito 2009), ranging from primary metabolites such as sugars
and amino acids which provide the monomers needed for the
generation of proteins, starches and cell wall comp.onents as
well as lipophilic compounds. Moreover, plants produce a wide
diversity of secondary or specialized metabolites synthesized
either to protect against biotic or abiotic stresses or as attrac-
tors, in order to induce pollination, and it is this class of
metabolites that comprises the vast majority of the compounds
estimated to be present in the plant kingdom. Three major
technologies are currently being used for tomato metabolo-
mics, namely gas chromatography–mass spectrometry
(GC-MS), liquid chromatography–mass spectrometry
(LC-MS) and nuclear magnetic resonance (NMR). In the follow-
ing sections, we will briefly describe features of these methods
and review the coverage each affords. For this purpose,
Supplementary Table S1 provides an inventory of metabolites
reported in tomato using each of these techniques. The first
metabolomics studies on tomato were published in 2003 when
papers utilizing GC-MS, NMR and LC-MS were published
(Burns et al. 2003, Le Gall et al. 2003, Roessner-Tunali et al.
2003). We will return to the biological findings reported in
these papers below, but first present a brief overview of the
major technologies used for metabolomics in tomato fruit as
well as surveying recent developments in the field.

GC-MS is arguably the most widely used technique for plant
metabolomics research to date. For this technique, polar
metabolites are derivatized to render them volatile (unless
they are naturally volatile) and then they are separated by

GC. For detection, time-of-flight (TOF)-MS has become the
method of choice because of advantages including fast scan
times, which give rise to either improved deconvolution or
reduced run times for complex mixtures, and relatively high
mass accuracy (Obata and Fernie 2012). The crucial advantage
of this technology lies in the fact that it has long been used for
metabolite profiling; thus, there are stable protocols for
machine set-up and maintenance as well as chromatogram
evaluation and interpretation (Fernie et al. 2004, Halket et al.
2005, Lisec et al. 2006). The robustness of the protocol means
that libraries of retention time and mass spectra data for stand-
ard compounds can be shared among laboratories (Schauer
et al. 2005a). There are several metabolite databases available
including the NIST (http://www.nist.gov/), FiehnLib (Kind et al.
2009), Golm metabolic databases, GMD (Kopka et al. 2005),
KOMICs (Sakurai et al. 2014) and MoTo DB (Moco et al.
2006), which facilitate rapid peak annotation. Additionally,
the short running time and relatively low running cost are
strong advantages of GC-MS. However, the use of GC-MS is
limited to thermally stable volatile compounds, making the
analysis of high molecular weight compounds (>1 kDa) diffi-
cult. Due to the characteristics described above, GC-MS facili-
tates the identification and robust quantification of a couple of
hundred metabolites in plant samples including sugars, sugar
alcohols, amino acids, organic acids and polyamines, resulting in
fairly strong coverage of the central pathways of primary
metabolism. In contrast to GC-MS, general LC-based metabo-
lomic analysis does not require prior sample treatment. On the
other hand, some secondary metabolites are not stable under
high temperature and light conditions; extraction step needs to
be performed as rapidly as possible (Tohge et al. 2011).

LC separates the components in the liquid phase. The choice
of columns, including reverse phase, ion exchange and hydro-
phobic interaction columns, allows the separation of various
metabolites based on different chemical properties. Therefore,
LC has the potential to analyze a wide variety of metabolites in
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Fig. 1 Schematic overview of recent metabolomics-based approaches on tomato research.

1682

T. Tohge and A. R. Fernie | Tomato fruit metabolomics

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/article/56/9/1681/1876632 by guest on 24 April 2024

http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv093/-/DC1
http://www.nist.gov/


plants. The recent development of ultra-performance liquid
chromatography (UPLC) renders the technique more powerful
because of its sharper separation resulting in higher detection
sensitivity, reproductivity and throughput than conventional
HPLC (Rogachev and Aharoni 2012). Many types of MS, includ-
ing quadrupole TOF, triple quadrupole, ion trap, linear trap
quadrupole-Orbitrap and Fourier transform ion cyclotron res-
onance (FT-ICR)-MS, are used depending on the sensitivity,
mass resolution and dynamic range required (for details, see
Allwood and Goodacre 2010, Lei et al. 2011). The flexibility of
the method thus allows us to identify highly divergent metab-
olite types, but also causes difficulty in establishing large mass
spectral libraries for peak identification which are dependent
on the instrument-type reflected retention time and mass spec-
tra (Moco et al. 2006), and forces each research group to create
its own ‘in-house’ LC-MS reference library. That said, there are a
number of websites that aid in mass spectral analyses (reviewed
in Tohge and Fernie 2009). Furthermore, isotope labeling as a
means of confirming the identity of peaks has recently been
proposed and has been demonstrated to allow the identifica-
tion of approximately 1,000 metabolites using the FT-ICR-MS
approach (Giavalisco et al. 2009). To date, LC-MS is mainly used
with a reverse phase column to analyze secondary metabolites
because of its ability to separate compounds with similar struc-
ture and to detect a wide range of metabolites. However, spe-
cialized protocols for determining phosphorylated
intermediates, which are not readily detected by LC-MS, have
also been developed (Arrivault et al. 2009, Szecowka et al. 2013),
as have methods for the comprehensive analysis of phytohor-
mones (Kanno et al. 2010). NMR spectroscopy offers an entirely
different analytical approach to that afforded by MS-based
techniques, being based on atomic interaction. In strong mag-
netic fields, atoms with non-zero magnetic moments including
the biologically relevant 1H, 13C, 15N and 31P absorb and re-emit
electromagnetic radiation. This emission is characterized by its
frequency (chemical shift), intensity, fine structure and mag-
netic relaxation properties, all of which reflect the precise
environment of the detected nucleus. Therefore, atoms in a
molecule give a specific emission spectrum that can readily
be used for identification and quantification of metabolites
within a complex biological sample. The sensitivity of this
method is much lower than that of MS-based techniques,
and the number of compounds that can be detected in a
single analysis is limited to one to several dozen (Krishnan
et al. 2005, Kim et al. 2010). That said, given that it is so
simple to identify and quantify peaks, it is the ideal tool for
broad-range profiling of abundant metabolites, while studying
changes in non-annotated profiles is highly useful for metabol-
ite fingerprinting of extensive experiments (Lommen et al. 1998,
Dixon et al. 2006, Obata and Fernie 2012). Two further tech-
niques have recently been applied in tomato which warrant
discussion, namely LC linked to multiplexed non-selective col-
lision-induced dissociation (Wang and Jones 2014) and chem-
ical imaging using contact printing and laser desorption/
ionization MS (Li et al. 2014). The first of these represents a
powerful method to perform non-biased quantitative assess-
ment of labeling by using non-selective collision-induced

dissociation (i.e. fragmentation by measuring whole specialized
metabolites as well as their substructures). It can be anticipated
that this approach will prove highly useful as an extension of
labeling methods, in order to evaluate metabolic fluxes into
specialized metabolites beyond what is already known
(Giavalisco et al. 2009, Antonio et al. 2013, Nakabayashi et al.
2013). The second approach is radically different and involves
contact transfer of tissue content to a pencil-lead-coated glass
slide prior to matrix-assisted laser desorption ionization
(MALDI)-TOF analysis (Li et al. 2014). This method improves
on other metabolite imaging technologies, since it does not
suffer from artifacts introduced by matrix or solvent and
could readily be transferred to the crop field. This initial
proof-of-concept study additionally demonstrated that it was
able to provide similar results to LC-MS for a wide range of acyl-
sugars. It thus seems likely that widespread adoption of either
of these techniques will probably be highly informative aids in
our understanding of the tomato metabolome.

Development of Other Post-Genomic
Technologies in Tomato

Before detailing advances in tomato biology that were facili-
tated by the application of metabolomics, we felt it important
to provide some background knowledge concerning the state-
of-the art regarding various other molecular analyses in the
species. Unlike Arabidopsis and rice (Alonso et al. 2003,
Karlova et al. 2014), there are currently no knock-out collec-
tions for tomato; however, given that tomato has a long history
of genetic research, a wide range of classical mutants exist (Klee
and Giovannoni 2011). Several mutant libraries of tomato
mutagenized lines have been developed for analyzing the
mechanisms underlying mutant phenotypes (Menda et al.
2004, Dan et al. 2007, Saito et al. 2011). Alongside development
of libraries of such mutagenized tomato lines, TILLING (target-
ing induced local lesions in genomes) platforms were also
developed as a high-throughput reverse genetic strategy to
screen for point mutations in specific regions of targeted
genes (McCallum et al. 2000a, McCallum et al. 2000b, Colbert
et al. 2001, Minoia et al. 2010). The first outputs of TILLING
platforms, key genes for fruit pigments, fruit shelf-life, ethylene
responses and phenolics accumulation in tomato fruit, are
beginning to emerge (Minoia et al. 2010, Okabe et al. 2011, Di
Matteo et al. 2013, Okabe et al. 2013). Tomato was additionally
amongst the earliest plants subjected to transgenic approaches,
and robust protocols exist for transforming both nuclear and
plastid genomes of the species (Jongsma et al. 1987, Ruf et al.
2001). In addition, virus-induced gene silencing (VIGS) proto-
cols are now well established for tomato (Orzaez et al. 2009,
Quadrana et al. 2011), and novel genome editing methods such
as CRISPR are beginning to be reported for the species (Brooks
et al. 2014). In parallel, a broad number of genetics resources
based on classical breeding have been generated, including both
interspecies crosses and intraspecific crosses, wherein the cul-
tivated tomato have been crossed with one (or more) of its wild
relatives (Eshed and Zamir 1995, Lecomte et al. 2004, Prudent
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et al. 2009, Alseekh et al. 2013, Pascual et al. 2015), and associ-
ation mapping panels have been established for tomato (Ranc
et al. 2012, Sauvage et al. 2014). Complementing these resources
over the last 5 years, a massive research effort has been made in
genome sequencing of tomato. The genome of the cultivated
tomato and its closest relative S. pimpinellifolium was published
in 2012 (Tomato Genome Consortium), with that of S. pennellii
being published in 2014 (Bolger et al. 2014), together with gen-
omic sequencing of approximately 360 accessions (Aflitos et al.
2014, Lin et al. 2014). A major facilitator of this immense data
collection was the recent advances in sequencing technologies
which have also massively improved transcriptomics approaches
in tomato (Martin et al. 2013). Early transcriptomic studies relied
on microarrays (Fouts et al. 2002, Frick and Schaller 2002, Zhang
et al. 2004, Alba et al. 2005), and these provided several import-
ant observations including global profiling of gene expression
response to Pseudomonas syringae, the fungal toxin fusicoccin,
cold treatment and of ethylene control during tomato fruit de-
velopment. Additionally, quantitative real-time PCR (qRT-PCR)
was used to survey the changes in transcription factor expression
across a ripening time course in wild-type and mutant tomato,
revealing a global overview of general transcriptional–metabolic
changes and light response mutant-specific biphasic changes
during fruit ripening (Rohrmann et al. 2011), whereas changes
in plastidial gene expression, over a similar development course,
were evaluated by means of a custom microarray (Kahlau and
Bock 2008). Such approaches have recently been superseded by
RNA sequencing (RNA-seq; Matas et al. 2011, Chitwood et al.
2013, Koenig et al. 2013) which has been used to compare spe-
cific tissues and/or tomato wild accessions investigating differ-
ences in developmental architecture, domestication and
characterization of a cuticle on the inner surface of the pericarp.
Furthermore, epigenetic aspects have been comprehensively
characterized in recent studies of the fruit methylome (Zhong
et al. 2013), while these aspects of regulation have also received a
lot of attention in more targeted approaches centered on toc-
opherol and lignin metabolism and tomato ripening (Manning
et al. 2006, Shivaprasad et al. 2012, Quadrana et al. 2014).
Finally, considerable research has been carried out utilizing prote-
omics notably focusing on plastid maturation and defense re-
sponses (Yeats et al. 2010, Barsan et al. 2012). In the next sections,
we detail advances in our understanding of small molecule me-
tabolism at the environmental, developmental and genetic levels
on a compound class by compound class basis.

Metabolite Profiling of Primary Metabolites

Sugars, organic and amino acids

The advent of metabolomics in plants (in fact arguably in all
species) was the application of GC-MS. The term metabolome
was coined by Steven Oliver and colleagues in a review in 1998
(Oliver 1998), and while it was used to describe 2D chromato-
graphic evaluation of Escherichia coli by Tweeddale’s group
(Tweeddale et al. 1998), this study presented little in the way of
compound identification. While metabolite profiling was used as
a technique to classify herbicide mode of action, in an

unfortunately overlooked paper, in 1991 (Sauter et al. 1991), the
manuscript by Fiehn et al. in 2000 wherein >300 distinct peaks
were quantified (Fiehn et al. 2000) is viewed by many as the first
metabolomics paper. In this study, the authors established an
analytical method based on GC-MS for evaluation of biological
variation of metabolic changes in Arabidopsis ecotype and
mutant lines. Two years later, the same approach was taken in
order to understand confounding results from strategies attempt-
ing to metabolically engineer an enhanced potato tuber biosyn-
thesis (Roessner et al. 2001). As mentioned above, the initial
reports of metabolomics approaches were carried out in 2003—
two of which were focused on primary metabolites (Le Gall et al.
2003, Roessner-Tunali et al. 2003). The first of these looked for
unintended effects of manipulating flavonol metabolism by gen-
etic engineering screening sugars, amino acids and phenolic com-
pounds, and revealing changes in the levels of 15 metabolites in
addition to the target compounds (Le Gall et al. 2003). The other
study also analyzed transgenic lines—in this case lines overexpres-
sing hexokinase—and revealed that the influence of this activity
on the fruit primary metabolome decreases across development
(Roessner-Tunali et al. 2003). Given that these studies are both
over a decade old, it is probably not surprising that considerable
research has subsequently been published in both areas.

Primary metabolic shifts during development

The evaluation of metabolic shifts, reflecting changes in the
metabolic flux and a general decrease in metabolic activity in
primary metabolism during fruit ripening, has similarly received
much attention. Particularly notable are the studies of Carrari
et al. (2006) and Mounet et al. (2009) which were mainly reliant
on GC-MS and NMR, and LC-MS, respectively. Interestingly,
both studies carried out transcript profiling in parallel and
were thus able subsequently to assemble gene–metabolite
networks during the progression from early to late develop-
mental stages of fruit ripening. In the first of these studies,
GC-MS-based profiling of primary metabolites alongside GC-
MS-based profiling of cell walls was carried out together with
HPLC-based pigment analyses, providing data for in excess of 90
metabolites across a dense sampling kinetic. Some features of
the metabolite data alone provided some interesting insight
into the metabolic shifts occurring on ripening, including the
ability to address the operational feasibility of the various path-
ways of ascorbate biosynthesis in this tissue. When correlation
analyses was used to assess if there were any metabolic cues or
responses to known signature genes of ripening, it was found
that most metabolites exhibited very little correlation, with the
exception of sugar phosphates, pigments and intermediates of
the tricarboxylic acid (TCA) cycle. The causal link between TCA
cycle intermediates and aspects of fruit ripening was demon-
strated and later reinforced by studies which revealed that
alterations in malate content resulted in reciprocal changes in
the level of transitory starch, soluble sugars and post-harvest
properties of tomato fruits (Centeno et al. 2011, Osorio et al.
2013b). The results of the study by Mounet et al. (2009) pro-
duced similar conclusions, identifying 37 direct gene to metab-
olite correlations involving regulatory genes such as bZIP and
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MYB transcription factors, and it can be anticipated that work
on these genes will further enhance our understanding of the
role of metabolic shifts in tomato fruit development (Carrari
and Fernie 2006). Interestingly, considerable further experi-
ments have been carried out which characterize primary
metabolism during fruit development and ripening (Alba
et al. 2005, Enfissi et al. 2010, Karlova et al. 2011) and peach
(Borsani et al. 2009, Zhang et al. 2010, Lombardo et al. 2011), as
well as in non-climacteric fruits (those not characterized by an
ethylene-driven respiratory burst), such as strawberry (Fait et al.
2008, Bombarely et al. 2010, Osorio et al. 2011b), pepper
(Osorio et al. 2012, Liu et al. 2013) and grape (Deluc et al.
2007, Grimplet et al. 2007). Recently developed statistical meth-
ods have already been employed in a proof-of-concept study
aimed at identifying conserved and non-conserved patterns of
metabolite change during ripening (Klie et al. 2014). This study
identified that the pattern of change in the levels of malate,
serine, threonine and aspartate discriminated climacteric from
non-climacteric fruits. It relied on data not only from the spe-
cies mentioned above but also from the well-defined ripening
mutants of tomato non-ripening (nor), ripening-inhibitor (rin)
and Never-ripe (Nr) (Osorio et al. 2011a). Metabolic profiling of
these mutants revealed marked shifts in the abundance of me-
tabolites of primary metabolism which lead to decreases in
metabolic activity during ripening. When combined with tran-
scriptomic and proteomic data, several aspects of the regula-
tion of metabolism during ripening were revealed. First,
correlations between the expression levels of genes and the
abundance of their corresponding proteins were infrequently
observed during early ripening, suggesting that post-transcrip-
tional regulatory mechanisms play an important role in these
stages; however, this correlation was much greater in later
stages. Secondly, we observed very strong correlation between
ripening-associated transcripts and specific metabolite groups,
such as organic acids, sugars and cell wall-related metabolites,
underlining the importance of these metabolic pathways
during fruit ripening. These results thus further revealed
multiple ethylene-associated events during tomato ripening,
providing new insights into the molecular biology of ethyl-
ene-mediated ripening regulatory networks.

The genetic determinants of primary metabolite
accumulation

In the past few years, several studies have been carried out at the
metabolomic level to identify the compositional quality of genetic
determinants in several plant species including Arabidopsis,
tomato, wheat, rice, sesame, broccoli and mustard (Schauer
et al. 2006, Meyer et al. 2007, Rowe et al. 2008, Fernie and
Schauer 2009, Fernie and Klee 2011, Kusano et al. 2011, Hu
et al. 2014, Wen et al. 2014). These studies have led to a far
richer description of the natural variation of chemical compos-
ition in these species, facilitating the identification of important
sources of allelic variance for metabolic engineering (Fernie and
Schauer 2009). In this vein, 10 papers concerning research in
tomato are perhaps the most relevant so we will dedicate this
section to describing them. In an early experiment, Schauer et al.

(2005b) inventorized the primary metabolite content of fruits and
leaves of cultivated tomato and five of its wild species relatives,
namely S. pimpinellifolium, S. neorickii, S. chmielewskii, S. habro-
chaites and S. pennellii. This study showed that there were many
differences in metabolites such as hexoses and proline which may
reflect adaptation to stressful growth habits, whereas several
other metabolites such as essential amino acids and vitamins
are of nutritional importance and thus this information may be
of importance for breeding strategies. Given this fact, studies in
our laboratory have focused largely on a population of 74
S. lycopersicum�S. pennellii introgression lines (ILs). We initially
used the established GC-MS method describe above over two
independent harvests, being able to identify 889 quantitative
trait loci (QTLs) governing the accumulation of 74 metabolites.
Interestingly, although in many cases the metabolite content was
increased, this was often associated with a yield penalty (Schauer
et al. 2006). In order to establish whether these traits were herit-
able, we grew the S. pennellii introgressions for a third harvest,
alongside lines that were heterozygous for the introgression
(ILHs), enabling the evaluation of hereditability and the QTL
mode of inheritance (Schauer et al. 2008). These studies revealed
that the mean hereditability of the metabolite QTLs was of a
range that would be regarded as intermediate. The comparative
study of the tomato ILs and ILHs, however, revealed that most of
the metabolic QTLs were dominantly inherited, with a consider-
able number displaying an additive or recessive mode of action
and only a negligible amount displaying the characteristics of
overdominant inheritance. Interestingly, the mode of inheritance
was quantitatively different between diverse classes of com-
pounds, with, for example, sugars and acids displaying signifi-
cantly different patterns of inheritance. Moreover, several
metabolite pairs belonging to the same pathway displayed a simi-
lar mode of inheritance at the same chromosomal loci, indicating
that the variation in both metabolites is probably mediated by
enzymes involved in their interconversion. However, the associ-
ation between morphological and metabolic traits was far less
prominent in the ILHs than in the ILs, which has wide implications
for breeding strategies. The possibility of uncoupling enhanced
metabolite content from any penalties with respect to plant per-
formance and fecundity, and redevelopment of hybrid genetic
material could prove an important advance in the use of gen-
omics-driven breeding approaches in breeding programs; the fact
that metabolite heritabilities of 25–35% are commonly estimated
bodes well for the addition of this technique in future breeding
strategies. The metabolomics data provided in these studies con-
firmed previously identified metabolic QTLs such as the Brix QTLs
on chromosome 9 (Fridman et al. 2004) as well as identifying
novel QTLs which have subsequently been cloned and/or
tested by reverse genetic strategies, such as those involved in
tocopherol (vitamin E) and branched chain amino acid content
(Maloney et al. 2010, Quadrana et al. 2014). In addition, a S.
chmielewskii IL population was profiled via the same method;
however, the sink–source relationship was also altered by reduc-
tion of the fruit load (Do et al. 2010). This study, which also
represents important research into the environmental influence
of the metabolome, provided support for the earlier finding that
harvest index had a major impact on metabolism. A further study
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using intraspecific introgressions revealed that metabolite con-
tent of primary metabolites could be as strongly influenced by
introducing variant alleles from within the species (Zanor et al.
2009), most probably highlighting the rigidity of primary metab-
olism. A final study that is important to discuss here is the first
description of the use of metabolomics for genome-wide associ-
ation studies in tomato (Sauvage et al. 2014). The authors used a
core collection of 163 tomato accessions composed of S. lycoper-
sicum, S. lycopersicum cv. cerasiforme and S. pimpinellifolium to
map loci controlling variation in fruit metabolites, with fruits
being phenotyped for a broad range of metabolites including
amino acids, sugars and ascorbate. In parallel, the accessions
were genotyped with almost 6,000 single nucleotide polymorph-
ism markers spread over the genome, allowing for the identifica-
tion of 44 loci that were significantly associated with a total of 19
traits including sucrose, ascorbate, malate and citrate levels, re-
vealing this strategy also to be a powerful approach in the defin-
ition of candidate genes for crop compositional improvement.

Metabolic Profiling of Volatile Organic
Compounds

Tomato volatile organic compounds

Tomato flavors are primarily defined by sugars such as glucose
and fructose, by acids such as citrate, malate and glutamate, the
profiling of which is described above, as well as multiple less
defined volatiles (Baldwin et al. 2000, Tieman et al. 2012).
Intriguingly, of the 400 volatiles detectable in tomato fruits
(Tikunov et al. 2005), only 16 were predicted to contribute to
flavor. Indeed the most important volatiles seem almost exclu-
sively to derive from essential nutrients such as phenylalanine,
leucine, isoleucine or linolenic acid. Many of these compounds
accumulate as glycosylated precursors in a non-volatile form
which are rendered volatile by the action of glycosidases. A
recently identified glucosyltransferase adds a third sugar to
the conjugate on the onset of ripening, resulting in a drastic
reduction in the release of these volatiles (Tikunov et al. 2010,
Tikunov et al. 2013), reminiscent of the behavior of other bitter
metabolites such as a-tomatine (see below). It is now becoming
clear that not only these 16 metabolites contribute to aroma
across the entire spectrum of tomato fruits, and some metab-
olites, such as, for example, guaiacol, are present in considerable
amounts in certain types of tomato fruits (Mageroy et al. 2012).
Conversely, recent studies using prediction models have sug-
gested that some of the 16 metabolites, such as, for example,
b-damascenone, apparently have no contribution to tomato
flavor (Tieman et al. 2012). The relative levels of volatiles have
been demonstrated to vary greatly in different commercial hy-
brids (Tikunov et al. 2005), in heirloom varieties (Tieman et al.
2012) as well as in wild breeding populations (Causse et al. 2002,
Mathieu et al. 2009); we will document this variation below. It is
important to note that the ripening of fruit includes a dramatic
change in its volatile profile (Ortiz-Serrano and Vicente Gil
2010). While, as mentioned above, some of this change is prob-
ably due to the action of glycosidases, it is anticipated that
much of it is due to the transcriptional changes which occur

on ripening (Rambla et al. 2014). Nevertheless, despite the pres-
ence of detailed expression maps of transcription factor abun-
dance during tomato fruit ripening (Rohrmann et al. 2011),
relatively little is known concerning the action of these, with
a few exceptions such as the gene encoding SlODO1 (Orzaez
et al. 2009). That said, the classical ripening transcription factor
mutants rin and nor have additionally been documented to be
impaired in the emission of a subset of flavor volatiles (Kovacs
et al. 2009). These facts suggest that combined metabolomics
and transcriptomics studies could provide further candidate
genes for developmentally regulated improvement of flavor.
Similarly, it has been noted that the synthesis of very many
flavor volatiles increases concomitantly with ethylene produc-
tion (Tieman et al. 2006a) and that their synthesis is thus
blocked in the ethylene-insensitive mutant Nr (Kovacs et al.
2009). Moreover, epigenetic changes are also an important
component of ripening, as demonstrated by the Colorless
non-ripening (Cnr) mutant (Manning et al. 2006), and more
recent studies have revealed the programs of DNA methylation
occurring during the ripening process (Zhong et al. 2013).

The genetic determinants of volatile organic
compounds

In tomato, several broad screenings of genetic populations at the
level of their volatile content have been performed using the
strategies above. In this section we will describe these on an ap-
proach by approach basis starting with those displaying the nar-
rowest genetic diversity. In 2005, Tikunov et al. profiled a total of
322 compounds using solid phase methyl ester GC-MS across a
set of 94 contrasting tomato genotypes covering the variation in
the germplasm of commercial varieties (Tikunov et al. 2005). The
study revealed that levels of volatiles of a certain chemical class
behave similarly, a fact exemplified by the phenylpropanoid-
derived volatiles and their derivatives. This is a highly interesting
observation given that phenylpropanoid metabolism is known to
contribute to plant stress responses (Dixon and Paiva 1995) while
methyl salicylate has been demonstrated to be an airbourne sig-
naling agent in pathogen resistance (Shulaev et al. 1997, Tieman
et al. 2010). Evaluation of the volatile content of 19 heirloom
varieties revealed massive differences in the levels of the individual
volatiles, which varied between 12- and in excess of 3,000-fold
(Tieman et al. 2012). This study also employed tasting panels as
well as modeling studies in order to better understand the factors
conferring a tomato with flavor. Arguably, the most informative
strategy to date was the adoption of the QTL approach as
described above for primary metabolites. A broad profiling of
fruit volatiles in the S. pennellii ILs yielded 100 QTLs that were
conserved across harvests (Tieman et al. 2006b). Metabolic and
flux profiling of one of these QTLs was instrumental in defining
the pathway for synthesis of important phenylalanine-derived
aromatic compounds in the fruit (Tieman et al. 2006a). Some
30 additional QTLs were identified in a second population of
ILs derived from a a cross between the elite cultivar with the
wild species S. habrochaites (Mathieu et al. 2009). Whilst these
approaches were reviewed recently (Fernie and Klee 2011), several
studies of note have been published in the meantime, and recent
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estimates state that>50 volatile QTLs have now been reported in
tomato (Alseekh et al. 2013, Klee and Tieman 2013). A QTL
located on chromosome 1 affects multiple volatile esters, with
the S. pennellii introgression conferring up to 20-fold increases in
these metabolites; intriguingly, these compounds correlate nega-
tively with human taste preferences, suggesting that the esters
may be linked to palatability. A retrotransposon insertion into the
promoter of a carboxylesterase gene of the red-species progenitor
led to a massive up-regulation of expression of this gene and
consequent reductions in this suite of metabolites (Goulet et al.
2012). These results were recently complemented by a study of a
ripening-related alcohol acyltransferase (AAT1) which was found
to be far more efficient in S. pennellii than in S. lycopersicum,
leading to the conclusion that the two species have evolved to
adjust their volatile content precisely by careful modulation of the
synthesis and degradation of esters (Goulet et al. 2015). In add-
ition, the importance of a lipoxygenase and a glucosyltransferase
to volatile content has also been demonstrated using transgenic
approaches coupled to targeted metabolite profiling (Tikunov
et al. 2013, Shen et al. 2014). In the first of these studies, the
gene non-smoky glycosyltransferase, a glycosyltransferase acting
on phenylpropanoids which are the precursor molecules for
smoky flavor, which had previously been identified to associate
with this flavor (Menendez et al. 2012), was proven to prevent the
damage-induced release of the smoky aroma-associated phenyl-
propanoid-derived volatiles in ripening tomato fruit by means of
structural modification of their glycoconjugates (Tikunov et al.
2013). The other study targeted the 13-lipoxygenase, TomloxC,
revealing that this enzyme is important for the synthesis of both
C5 and C6 flavor volatiles (Shen et al. 2014), thereby confirming it
as an important target for improving flavor. Additionally of inter-
est with regard to manipulating volatile content is the supply of
precursors for their production. The study of Zanor et al. (2009),
described above, profiled the volatile content alongside that of
primary metabolism, indicating that the links between the class of
metabolites were not very tight. Similarly, in tomato, the levels of
phenylpropanoids (Tieman et al. 2006a, Dal Cin et al. 2011) and
branched chain amino acids (Kochevenko et al. 2012) did not
correlate with the levels of volatiles derived from them. As yet,
association mapping studies of tomato volatiles have not been
documented; however, they will probably provide an important
avenue for research in the future. Whilst interrogation of pub-
lished and soon to be published next-generation sequencing re-
sources for the genomes of tomato wild species (Aflitos et al.
2014, Lin et al. 2014) and cultivars, and RNA-seq data sets
(Matas et al. 2011, Chitwood et al. 2013, Koenig et al. 2013,
Bolger et al. 2014) will probably also provide important clues
toward flavor improvement.

Metabolic Profiling of Non-Volatile Secondary
Metabolites

Phenylpropanoids, flavonoids, glycoalkaloids,
pigments and acyl-sugars

Given that they have been very recently reviewed (Slimestad
and Verheul 2009, Tohge et al. 2014), we will not cover studies

into the metabolic regulation of secondary metabolism in any
great detail here. In addition to the volatile organic compounds
described above, tomato fruits are known to produce a wide
variety of secondary metabolites such as polyphenols, caroten-
oids and alkaloids. The dynamic levels of many of these metab-
olites vary in a manner like that of the 400 detectable volatiles
described above, in order to minimize the attractiveness of the
fruit prior to maturity and maximize its attractiveness there-
after. Despite not going into detail concerning the dynamics of
these compound classes, it is pertinent to describe the various
technical methods utilized in their evaluation. The vast majority
of these are based on LC-MS; however, before covering these
approaches, it is worth mentioning a handful of studies utilizing
earlier technologies. For example, NMR using purified chemicals
from plant extracts has been utilized to profile positional as-
signments between C-H in substitution of specific acyl groups,
and locations of branching (Ghosh et al. 2014). Similarly, it has
been demonstrated that MALDI/TOF-MS can be utilized to
acquire mass spectra of carotenoids effectively (Fraser et al.
2007). The technique has been applied in vivo to the analysis
of carotenoids in isolated plant cells and in vitro, as well as in a
preliminary QTL analysis described below. Finally, a recent com-
binatorial approach that was mainly based on direct infusion
MS allowed the evaluation of some 2000 metabolic signatures
(Perez-Fons et al. 2014). The vast majority of studies, however,
rely on the combination of LC and MS (Moco et al. 2006, Iijima
et al. 2008, Mintz-Oron et al. 2008, Rohrmann et al. 2011).
A total of approximately 250 annotatable metabolites have
been observed and reported in tomato fruit using such meth-
ods (Supplementary Table S1). It is difficult to obtain exact
confirmation given the limitation of available commercial
standards; however, a combination of approaches including
use of literature- and web-based resources (Moco et al. 2006,
Iijima et al. 2008, Mintz-Oron et al. 2008, Tohge and Fernie 2009,
Sakurai et al. 2014, Schwahn et al. 2014, Tohge et al. 2014) as
well as the use of biological standards, i.e. well characterized
samples which can be used to aid in the identification of a novel
unstudied sample (Farag et al. 2007, Suzuki et al. 2008, Tohge
and Fernie 2010, Saito et al. 2013, Yang et al. 2014). The utiliza-
tion of high-resolution MS can allow the determination of the
exact chemical formula of an analyte (Iijima et al. 2008, Mintz-
Oron et al. 2008, Weber et al. 2011, Allwood et al. 2012) which is
highly useful, but, especially in the case of secondary metabol-
ites, falls some way short of providing structural information.
Large (>1,000 m/z) secondary N- and S-containing metabolites,
such as highly modified glycoalkaloids, are difficult to use in this
approach, because higher abundance of each C, N and S mono-
isotopic peaks results in less accuracy of mass detection. Such
an approach, however, is a very powerful tool to distinguish
CHO formed and other types of metabolites. A further
approach that merits discussion, however, is the use of
whole-plant stable isotope labeling which has been applied to
both secondary metabolites and lipids (Giavalisco et al. 2009,
Bromke et al. 2014), since this approach is highly effective in
distinguishing biologically derived analytes from laboratory-
derived artifacts. In tomato, several screens of carotenoids
were carried out in the 1980s and 1990s, and metabolic
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regulation of this pathway was dissected via the cloning of a
range of color mutants (Bird et al. 1991, Thompson et al. 1999,
Ronen et al. 2000, Isaacson et al. 2002, Galpaz et al. 2008,
Kachanovsky et al. 2012), with a similar approach also allowing
the identification of regulatory elements of the skin phenylpro-
panoid underlying the y (colorless fruit epidermis) mutant
(Adato et al. 2009). The first metabolomics approach targeting
fruit secondary metabolism was, however, that of Aharoni and
co-workers who used direct infusion FTICR-MS to classify sec-
ondary metabolite groups which show a different expression
profile during fruit development in strawberry (Aharoni et al.
2002). This study did not however return exact identifiers for
the composite metabolites. As stated in Supplementary Table
S1, 36 acyl-sugars, 122 flavonoids, 56 hydroxycinnamates and
49 glycoalkaloids have, to date, been annotated to be present in
the tomato clade.

A range of polyphenols, namely phenylpropanoids and fla-
vonoids, have been reported in tomato leaf, skin and pulp
(Slimestad et al. 2008, Tohge et al. 2014). Because of the pleio-
tropic health-beneficial effects of dietary plant polyphenols,
several polyphenols, for example chlorogenic acids (Hermann
1979, Schuster et al. 1986), sinapic acid derivatives (Wardale
1973), vanillic acid (Schmidtlein and Herrmann 1975, Fleuriet
and Macheix 1976), hydroxycinnamate derivatives (El Khatib
et al. 1974), naringenin and quercetin-3-O-rhamnoside (Wu
and Burrell 1958), naringenin-glycosides (Miki and Akatsu
1972, Galensa and Herrmann 1979) and rutin (Rivas and Luh
1968), have been investigated using domesticated tomatoes in
early studies. In recent studies, using MS-based metabolomics
approaches (Moco et al. 2006, Iijima et al. 2008, Mintz-Oron
et al. 2008, Dal Cin et al. 2011, Rohrmann et al. 2011), in total
>170 polyphenols have been detected and annotated
(Supplementary Table S1). Several studies have been carried
out using the transgenic approach promoting higher produc-
tion of flavonoid, by Petunia chalcone synthase (PhCHI; Muir
et al. 2001), Petunia Del and Ros1 (Butelli et al. 2008), maize LC
and C1 (Bovy et al. 2002) and an activation tagging line (ANT1;
Mathews et al. 2003). In general, phenylpropanoids and flavon-
oids are present in all seed plants and in almost all plant organs.
In addition it is known that their structural diversity and quan-
tities vary considerably within and between plant species and
accessions (Saito et al. 2013, Tohge et al. 2013). Recent studies
on tomato glandular trichomes using S. lycopersicum, S. pennel-
lii, S. pimpinellifolium and S. habrochaites elucidated several
methyltransferase involved in glandular trichome-specific
flavonoids (Schmidt et al. 2011, Schmidt et al. 2012, Kim et al.
2014). However, as yet metabolomic profiling of common
flavonoid derivatives using a wide variety of tomato accessions
has not been documented; the chemical diversity of flavonoids
will be determined in future studies.

As mentioned above, there is a ripening-dependent conver-
sion of tomatine to esculeoside glycoalkaloids via a series of
hydroxylation and glycosylation reactions (Fujiwara et al.
2005, Iijima et al. 2008, Katsumata et al. 2011). Given that the
former are toxic while the latter confer nutritive properties
(Friedman et al. 2000), it has been proposed that they dissuade
animals from eating the immature fruit. Changes in the level of

a-tomatine and dehydrotomatine have been widely docu-
mented to be dependent on genotype, tissue and growth con-
ditions (Friedman and Levin 1998, Kozukue et al. 2004, Iijima
et al. 2008, Iijima et al. 2009, Itkin et al. 2011). In addition,
glycoalkaloid profiling of rin, nor and Nr revealed that the toma-
tine to esculeoside conversion is regulated by ethylene-depend-
ent fruit maturation (Itkin et al. 2009). By application of
recently developed LC-MS metabolome platforms, >100 ster-
oidal glycoalkaloids have been described in various tomato tis-
sues (Moco et al. 2006, Iijima et al. 2008, Mintz-Oron et al. 2008,
Itkin et al. 2011, Rohrmann et al. 2011). In the tomato pericarp
of S. lycopersicum, some 12 steroidal alcohol glycoalkaloids were
putatively annotated (Rohrmann et al. 2011). However, meta-
bolic profiling of tomato outer epidermis revealed 40 (Moco
et al. 2006), 13 (Mintz-Oron et al. 2008) or 93 (Iijima et al. 2008)
steroidal glycoalkaloids, respectively. Additionally some 85 ster-
oidal glycoalkaloids were identified in 21 tomato tissue types
(Itkin et al. 2011), whereas 123 were found in fruit extracts of
eight different accessions including wild species (Iijima et al.
2013). Moreover, a recent co-expression analysis-based study
revealed the presence of steroidal glycoalkaloid gene clusters on
chromosomes 7 and 12, while silencing of GLYCOALKALOID
METABOLISM 4 (GAME4) resulted in a lower abundance of
steroidal glycoalkaloids (Itkin et al. 2013). Within the last year,
the complexity of the tomato steroidal glycoalkaloid network
has been further expanded with a detailed study that identified
169 putative steroidal glycoalkaloids found in eight tomato
accessions (S. lycopersicum, S. pimpinellifolium, S. cheesmaniae,
S. chmielewskii, S. neorickii, S. peruvianum, S. habrochaites and S.
pennellii) and four tissue types. The combined data were used
for correlation analysis and were able to make a valuable con-
tribution towards annotation and classification of steroidal gly-
coalkaloids as well as detecting novel putative biosynthetic
branch points (Schwahn et al. 2014). This study also highlighted
that understanding and construction of a scaffold of a whole
biosynthetic pathway can be applied for integration analysis
with other omics data such as a transcriptome data set for a
further functional genomics approach. As for the primary
metabolites and volatiles, wide breeding populations have
begun to be utilized in the study of secondary metabolism.
To date, the majority of this work has focused on either pig-
ments or acyl-sugars (Schilmiller et al. 2012, Perez-Fons et al.
2014); however, a recent study has expanded this to include
phenylpropanoids and glycoalkaloids (Alseekh et al. 2015).

The genetic determinants of secondary
metabolites

While, as mentioned abov, the majority of our knowledge con-
cerning pigmentation of fruits comes from work with spontan-
eous or experimentally derived mutants (Bird et al. 1991,
Wilkinson et al. 1995, Thompson et al. 1999, Ronen et al.
2000, Isaacson et al. 2002, Galpaz et al. 2008, Kachanovsky
et al. 2012), a process which has recently been accelerated by
the development of TILLING platforms for tomato (Jones et al.
2012), ILs have also been used to study these pathways. In the
proof-of-concept paper detailed above for the utilization of
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MALDI-MS for plant carotenoids, QTLs were identified within a
subset of the S. pennellii ILs for canthaxanthin and D-lycopene
(Fraser et al. 2007). Similarly, analysis based on color alone
revealed many QTLs within this population, but also revealed
that there were factors influencing this trait beyond the struc-
tural genes of carotenoid metabolism (Liu et al. 2003). In an
attempt to identify such factors, the group of Giovannoni took
a network-based approach wherein they performed HPLC-
based profiling of carotenoid and lycopene contents across
the S. pennellii ILs alongside expression analysis, with guilt-by-
association then being used to identify transcription factors
involved in carotenoid biosynthesis (Lee et al. 2012). Using
this approach, the authors identified SlERF6 as a potential regu-
lator and confirmed this hypothesis by modifying the expres-
sion of this gene by a transgenic approach and verifying changes
in the gene expression and metabolite levels involved in carot-
enoid biosynthesis. In an analogous approach, the tomato fruit
gene regulatory network was generated using artificial neural
network inference analysis and transcription factor gene
expression profiles derived from fruits sampled at various
points during development and ripening. One of the transcrip-
tion factor gene expression profiles with a sequence related to
the Arabidopsis thaliana ARABIDOPSIS PSEUDO RESPONSE
REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at
the breaker stage in wild-type tomato fruits and, when over-
expressed in transgenic lines, increased plastid number, area
and pigment content, enhancing the levels of Chl in immature
unripe fruits and carotenoids in red ripe fruits (Pan et al. 2012).
Returning to the structural genes, their action was studied in a
recent elegant VIGS study whereby nine genes were independ-
ently targeted and the effect of their silencing on 45 carotenoid
isomers was evaluated (Fantini et al. 2013). The recent discov-
eries that the phytohormones strigolactone and carlolactone
are derived from carotenoids (Vogel et al. 2010, Alder et al.
2012) provide a further reason for optimism that metabolomics
approaches such as those described in this review retain con-
siderable value in advancing our understanding of these meta-
bolic pathways. Plant hormones themselves have as yet
received relatively little attention at a global level in tomato
(Klee and Giovannoni 2011), although the metabolomes of
plants altered in their hormonal machinery have been discussed
in several publications (Wilkinson et al. 1995, Tieman et al.
2000, Barry and Giovannoni 2006, Vogel et al. 2010, Osorio
et al. 2013a, Kumar et al. 2014), as has the cross-talk between
primary metabolism and hormone levels within the fruit
(Araújo et al. 2012, Araujo et al. 2014).

Acyl-sugars are known as an interesting metabolite for the
investigation of cross-talk between primary or secondary me-
tabolism. Solanaceae acyl-sugars, also known as sugar-
polyesters, consist of aliphatic acyl groups of varying chain
length esterified to the hydroxyl groups of sugars. The acyl-
sugars in tomato fruits generally are of low abundance in S.
lycopersicum and S. pennellii (Alseekh et al. 2015), but several
studies looking at elucidation of acyl-sugar metabolism have
been performed using leaf glandular trichomes. The fact that
tomato acyl-sugars are found in glandular trichomes of the
wild tomato species, a trait often at lower abundance in

domesticated tomato species, is traditionally known by their
biological functions against aphids (Goffreda and Mutschler
1989, Rodriguez et al. 1993), leafminer (Hawthorne et al.
1992), whitefly (Kisha 1981, Liedl et al. 1995) and worms, includ-
ing fruit worm (Williams et al. 1980, Juvik et al. 1994, Dias et al.
2013). Despite lacking high acyl-sugar production in current
domesticated tomatoes, F1 plants from a cross between S. lyco-
persicum and S. pennellii produce moderate amounts (Resende
et al. 2002). Using a combination of metabolic QTL analysis,
cross-species comparison and genome-scale gene analysis, sev-
eral key genes encoding BAHD acyl-transferases (ATs; from
S. pennellii; Schilmiller et al. 2012) and S. habrochaites (Kim
et al. 2012), and 3-ketoacyl-acyl carrier protein synthase
(KAS; from S. pennellii; Slocombe et al. 2008) have been
found and characterized. As has been stated, acyl-sugars are
derived by sugar metabolism and acyl-CoA metabolism which
is synthesized from fatty acid metabolism and branched amino
acid (BCAA) catabolism (Slocombe et al. 2008, Schilmiller et al.
2012); thus metabolic engineering of higher production of acyl-
sugars is a complex process requiring the presence of multiple
genes and is difficult due to its complexity, quantitative inher-
itance and a lack of metabolic cross-talk. However, natural vari-
ation of acyl-sugars has been documented in some accessions;
largely different acyl-sugar profiles are found between S. hab-
rochaites (Kim et al. 2012, Ghosh et al. 2014) and S. pennellii
(Shapiro et al. 1994). In addition to being of interest with regard
to understanding the framework of biosynthetic branches and
key genes involved in species/accession-specific biosynthetic
steps, it will provide new insights into evolution of acyl-sugar
metabolism. Further investigation of key gene discovery, the
cross-talk between primary metabolism and flux analysis will
probably promote better understanding of acyl-sugar metabol-
ism and provide new important insights for metabolic-assisted
breeding.

A very recent study has extended the evaluation of second-
ary metabolism in tomato considerably (Alseekh et al. 2015). In
this study, the pericarp of the same samples of S. pennellii ILs
used for analyzing primary metabolism (Schauer et al. 2008)
were profiled using Orbitrap MS and 145 metabolites including
flavonols, phenylpropanoids, glycoalkaloids and acyl-sugars. In
total, 679 mQTLs (metabolomic QTLs) were detected across
the 76 ILs. As for the primary metabolites, comparison of the
metabolite abundances between plants expressing the intro-
gression homo- or heterozygously revealed that the mode of
inheritance of the majority of the mQTLs was dominant or
additive. Heritability analyses revealed that mQTLs of second-
ary metabolism were perhaps surprisingly less affected by the
environment than mQTLs of primary metabolism. However, it
is important to note that while on average there are fewer QTLs
per metabolite for the secondary metabolites, the magnitude of
the secondary metabolite QTLs is much greater, with certain
metabolites displaying up to 10,000-fold variation across the
population (Alseekh et al. 2015). The study additionally applied
the recently established qRT-PCR platform of Rohrmann et al.
(2011) to gain insight into putative transcriptional control
mechanisms of a subset of the mQTLs including those for
hydroxycinnamates, acyl-sugars, naringenin chalcone and a
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range of glycoalkaloids. Finally, VIGS was used to confirm the
candidate genes encoding glycosyltransferase as important for
creating glycoalkaloid diversity. As stated above, interrogation
of RNA-seq data alongside genome sequence data will probably
greatly accelerate progress in cloning the genes underlying
these QTLs. In addition, as previously stated by Zamir (2013),
further meta-analyses of the massive data sets reviewed here
will probably prove instrumental in identification of novel links
between traits and thus provide important information for
plant breeding.

Conclusions

Within the last 15 years, metabolomics-based approaches have
facilitated the acquisition of huge data sets and allowed the
uncovering of many previously unknown relationships. In add-
ition, the coverage of methods currently employed sums to
approximately 350 metabolites, which is far greater than that
of the earliest studies and would most probably have been
inconceivable some 20 years ago. While metabolite profiling
is one of the tools that is of high relevance for substantial
equivalence testing of novel crops as well as for quality testing
of foodstuffs, it is also an immensely powerful tool for funda-
mental research. In tomato fruit research its use is largely
focused in two areas (i) understanding of the metabolic shifts
that occur during development and (ii) understanding the
genetic architecture underlying accumulation of metabolites.
As we have described above, tomato is one of the pre-eminent
species for addressing these questions, with metabolomics play-
ing a central role as a tool in addressing these questions. Not to
downplay its importance, it is, however, important to note that
integrative approaches using metabolomics alongside other
post-genomic profiling methods appear to offer even greater
scope with regard to the biological questions which can be
tackled. Looking to the future, the grand challenge for metabo-
lomics remains to improve its comprehensiveness (Fernie et al.
2004); in addition, methods for assessing subcellular compart-
mentation of metabolism are likely to be crucial (Sweetlove and
Fernie 2013, Sweetlove et al. 2014), as is the further develop-
ment of isotope-based methods for flux profiling (Dal Cin et al.
2011, Szecowka et al. 2013). That said, research in the last
11 or so years has provided great advances in our understand-
ing of the structure and evolution of secondary metabolic path-
ways in tomato, as well as a better understanding of the
influence of primary metabolism on plant growth and
development.
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Supplementary data are available at PCP online.
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