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Similarity of gene expression profiles provides important
clues for understanding the biological functions of genes,
biological processes and metabolic pathways related to
genes. A gene expression network (GEN) is an ideal choice
to grasp such expression profile similarities among genes
simultaneously. For GEN construction, the Pearson correl-
ation coefficient (PCC) has been widely used as an index to
evaluate the similarities of expression profiles for gene pairs.
However, calculation of PCCs for all gene pairs requires large
amounts of both time and computer resources. Based on
correspondence analysis, we developed a new method for
GEN construction, which takes minimal time even for
large-scale expression data with general computational cir-
cumstances. Moreover, our method requires no prior par-
ameters to remove sample redundancies in the data set.
Using the new method, we constructed rice GENs from
large-scale microarray data stored in a public database. We
then collected and integrated various principal rice omics
annotations in public and distinct databases. The integrated
information contains annotations of genome, transcrip-
tome and metabolic pathways. We thus developed the inte-
grated database OryzaExpress for browsing GENs with
an interactive and graphical viewer and principal omics an-
notations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With
integration of Arabidopsis GEN data from ATTED-II,
OryzaExpress also allows us to compare GENs between rice
and Arabidopsis. Thus, OryzaExpress is a comprehensive
rice database that exploits powerful omics approaches
from all perspectives in plant science and leads to systems
biology.

Keywords: Correspondence analysis � Database � Gene
expression network � Microarray � Oryza sativa � Systems
biology.

Abbreviations: CA, correspondence analysis; DCA, distances
obtained from CA; GEN, gene expression network; GO, gene
ontology; MR, mutual rank; PAC, partial correlation coeffi-
cient; PCC, Pearson correlation coefficient; RMA, robust
multiarray average.

Introduction

To maintain biological activity, an appropriate gene set essen-
tial for cells, tissues, organs and the individual level is selected
from the genome and enhanced/suppressed through proper
regulatory mechanisms of gene expression. An essential gene
set controlled by a biological or physiological process frequently
shows similar temporal and/or spatial expression profiles
(Gibson et al. 2004, Al-Ghazi et al. 2009, Matsumoto et al.
2009, Swanson-Wagner et al. 2009). Therefore, similarity of
gene expression profiles provides important clues for under-
standing the biological functions of genes, biological processes
and metabolic pathways related to genes (Chen et al. 2008,
Endo et al. 2009, Yamagishi et al. 2009, Hsu et al. 2010).
Microarray technology is a powerful and effective tool for
genome-wide gene expression analysis within species
(Matsuura et al. 2010, Sakuraba et al. 2010) and between spe-
cies (Tsaparas 2006, Miller et al. 2010), and is used to identify
gene sets showing similar expression profiles among various
biological conditions (samples). Recently, large-scale microarray
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data have been accumulated in publicly available databases
such as NCBI GEO (Barrett et al. 2009), EBI ArrayExpress
(Parkinson et al. 2009) and DDBJ CIBEX (Ikeo et al. 2003). In
addition, combined methods with laser microdissection and
microarray have also been applied to isolating specific cells
from complicated plant tissues and separate transcriptomes
(Hobo et al. 2008, Suwabe et al. 2008, Watanabe 2008). With
a wealth of microarray data and a high resolution method for
the transcriptome, a comprehensive classification of gene
expression profiles is possible, allowing us to elucidate gene
functions and families (homologs).

A gene expression network (GEN) is an ideal technique for
grasping similarities of expression profiles among genes simul-
taneously. For GEN construction, the Pearson correlation coef-
ficient (PCC) has been widely used as an index to evaluate
similarities of expression profiles for gene pairs (Aoki et al.
2007, Fujii et al. 2010, Matsuura et al. 2010, Soeno et al.
2010). Obayashi and Kinoshita (2009) suggested that PCCs
are significantly overestimated when many replicates of a
sample (sample redundancies) are contained in a microarray
data set. Thus, instead of the PCC, mutual rank (MR) based on
rank transformations of the weighted PCC (wPCC) has been
used as a more sensitive index for sample redundancies.
However, this algorithm needs a cut-off threshold value in esti-
mating sample redundancy. The cut-off threshold value should
be statistically tested to evaluate similarities of gene expression
profiles appropriately. On the other hand, correspondence
analysis (CA) (Greenacre 2007), which is a multivariate analysis
method for profile data, permits concise interpretation of
the correspondence between genes and samples in microarray
analysis (Yano et al. 2006). CA for microarray data summarizes
an originally high dimensional data matrix [rows (genes) and
columns (samples)] into a low dimensional projection (space).
Scores (coordinates) in the low dimensional space are given
to each gene and sample. With the coordinates, genes and
samples can be plotted into a two- or three-dimensional
subspace. The distance between plots (genes) in a low dimen-
sional space, which is calculated from all or statistically signifi-
cant dimensions, depends on the degree of similarity of gene
expression profiles: a short distance means similar gene expres-
sion profiles and a long distance means different expression
profiles. Thus, distances can be used as an index for similarity
of gene expression profiles. In addition, CA does not require
any prior parameters to evaluate similarity, because it only
calculates distances between plots. Moreover, the effect of
sample redundancies in a data set can be mathematically
eliminated by reducing dimensions with the CA algorithm.
Moreover, CA takes minimal time even for a large-scale micro-
array data set (within 30 min for approximately 50,000
probes� 600 samples with a personal computer, such as a
MacBook3,1 OS X 10.6.5 with Intel Core 2 Duo 2.2 GHz and
4 Gb memory). The new index presented here, distances
obtained from CA (DCA), is suitable for appropriate and
quick evaluation of the similarities of gene expression profiles
and for construction of GENs.

Rice omics data including genome annotations are available
from major public databases. Current genome annotations
have been provided by the Michigan State University (MSU)
Rice Genome Annotation Project (Ouyang et al. 2007) and the
Rice Annotation Project (RAP-DB) (Rice Annotation Project
2008). Since their bioinformatics approaches to genome assem-
bly and annotation are different from each other, the predicted
sequences and identifiers (IDs) of loci and mRNA are conse-
quently different between MSU and RAP-DB. For example, a
locus Os06g0103700 (Os06t0103700-01) in RAP-DB is named
LOC_Os06g01410 in MSU. Other omics databases in rice also
employ IDs of either MSU or RAP-DB. Information on meta-
bolic pathways in RiceCyc (Liang et al. 2008) are described by
locus IDs of MSU, while the KEGG PATHWAY database (Okuda
et al. 2008) provides information on metabolic pathways with
locus IDs of RAP-DB. For annotations of microarray probes, IDs
of MSU and RAP-DB are used for Affymetrix and Agilent plat-
forms, respectively. Due to the inconsistent IDs among data-
bases, users cannot directly compare omics information from
distinct databases, such as RiceCyc and KEGG PATHWAY, as is
the case for rice GENs. Information on rice GENs is available
from public databases such as ATTED-II (Obayashi et al. 2007),
RiceArrayNet (Lee et al. 2009), GeneCAT (Mutwil et al. 2008)
and Rice Array Database (Jung et al. 2008). ATTED-II and
GeneCAT provide information on GENs constructed from
expression data of Affymetrix GeneChip Rice Genome Array.
GENs in RiceArrayNet are constructed from the Rice60k
Microarray. Rice Array Database provides only a list of gene
pairs with PCCs, and does not provide a GEN viewer to grasp
similarities among multiple genes simultaneously. Differences
in microarray platforms and GEN information formats prevent
analyses and comparisons of information on GENs in distinct
databases. Moreover, speculation regarding biological features
hidden in GENs requires various annotations from omics data-
bases. To overcome such issues, we constructed rice GENs by
CA and integrated principal omics information. The infor-
mation is available from our database OryzaExpress (http://
riceball.lab.nig.ac.jp/oryzaexpress/). OryzaExpress enables us
to trace gene IDs from different databases/projects, browse
GENs and refer to principal omics data stored in public data-
bases. GENs and annotation data integrated in OryzaExpress
thus provide more detailed and comprehensive information.

Gene expression data for GEN analysis

A total of 624 sample data sets in 37 experimental series (CEL
files from Affymetrix GeneChip Rice Genome Array, GPL2025)
were collected from NCBI GEO (Barrett et al. 2009). The 37
experimental series included gene expression data along with
a variety of biological and experimental conditions, such as time
courses, stress treatments, growth stages, organs, transformed
plants and mutant lines (Supplementary Table S1; see also
the download page in OryzaExpress). The collected data were
normalized in logarithmic scale by the robust multiarray
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average (RMA) method using the programs in R/Bioconductor
(Gentleman et al. 2004). Since the expression data normalized
with the RMA method have no negative values, the data set
can be used to perform CA calculations. To detect outliers,
the average and variance of gene expression levels among the
624 samples were also calculated for each probe.

CA for GEN

CA (Yano et al. 2006) was conducted against the normalized
gene expression data by the statistical package R (library ‘ca’)
(Nenadić and Greenacre 2007) and our developed software.
The calculation was performed in a Linux machine [RedHat 5,
64 bit operating system with Intel(R) Core(TM) 2 Duo 2.33 GHz
and 4 Gb memory] (Supplementary Fig. S2). For each probe
(gene), the coordinates in the low dimensional space were
obtained. To evaluate similarities of gene expression profiles
for each probe pair, a DCA (Euclidian distance) between two
probes in the low dimensional space was calculated. As the
DCA value is close to zero, the two probes have similar expres-
sion profiles (Supplementary Fig. S1). We also used PCCs
(PCC_CAs) for the coordinates of each gene pair to attempt
to identify genes showing reciprocal (inverse) expression pro-
files. Reciprocal expression profiles are sometimes effective in
searching repressor or downstream genes (e.g. Zeng et al. 2010).
When the expression profiles for a gene pair show a largely
reciprocal profile in the majority of samples, the PCC_CAs
value becomes negative (Supplementary Fig. S1). In the cal-
culation of DCAs and PCC_CAs, we used the first 15 dimen-
sions whose explained percentages are �1%. The cumulative
explained percentage of 15 dimensions is 71.9%.

Calculations of other indices for gene
expression similarities

As additional indices for gene expression similarities, PCCs, MRs
and partial correlation coefficients (PACs) were calculated. The
PCC between probes x and y was obtained by the following

equation PCCðx, yÞ ¼

Pn

i¼1
ðxi��xÞðyi��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi��xÞ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi��yÞ2

p , where n is

the total number of samples, xi and yi are expression levels of
x and y in the ith sample, respectively, and �x and �y are means of
expression levels among samples, respectively. MR and PAC for
each probe pair were calculated when the PCC value was �0.4.
Although MRs should be obtained from the rank transform-
ations of wPCCs (Obayashi et al. 2009), calculations of MRs
were based on the rank transformations of PCC for simplicity
in our analysis. PAC between probes x and y given probe z [the
first-order PAC (x, y|z)] provides the strength of a direct asso-
ciation between x and y by eliminating the effect of z (Snedecor
and Cochran 1989). For example, it is assumed that genes x and
y are controlled and up-regulated by the expression of gene z.
The mechanisms involved in the regulation of expression could
be suggested between x and z by the indices DCA, PCC and MR.

Like the relationship between x and z, the similarity between y
and z could be also implied by indices. However, if expression
profiles between x and y are significantly similar according to
indices, the similarity is indirectly caused by the expression
profile of z. To remove such a false positive between x and y,
the effect of the expression profile of gene z should be correctly
eliminated in order to evaluate the similarity between x
and y. The association could be given by the equation

PACðx, yjzÞ ¼ PCCðx, yÞ�PCCðx, zÞ�PCCðy, zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�PCCðx, zÞ2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�PCCðy, zÞ2
p : In this study, we calcu-

lated first-order PACs (x, y|zi), where i = 1�n and n is the total
number of probes except for x and y. Among first-order PACs
(x, y|zi), the minimum amount of PAC (x, y|zi) (PACmin) was
used as a similar index which suggests the lowest association
between genes x and y. When the PACmin value is �0.13152
(the significant probability of 0.1%), the association between
genes x and y is considered significant. On the other hand, when
the PACmin value is less than the threshold value, the associ-
ation between x and y is considered a false positive. Expression
profiles of genes detected by PCC and MR and the numbers of
false positives predicted by PACmin are shown in
Supplementary Fig. S1. The calculations for PCC, MR and
PACmin were performed on a Linux server (CentOS5.5 with
Xeon 7560 2.26G 32core and 1 Tb memory) to obtain the
results in a relatively short time (Supplementary Fig. S2).
The calculations were conducted separately with the 30 cores
in parallel.

Construction of web interfaces for GENs

For visual inspection of similarities of expression profiles among
multiple genes, web interfaces for GENs were developed using
the graph (network) visualization tool ‘Graphviz’ (Gansner and
North 2000). In the network graph as shown in Fig. 1, nodes
indicate genes and edges across nodes show the strength of the
associations (similarities of gene expression profiles). DCAs,
PCCs, MRs and PACmin were used as the indices for the simi-
larities of gene expression profiles. PCC_CAs, MRs and PCCs
were used as the indices for reciprocal gene expression profiles.
The statistics of gene pairs detected by DCA, PCC_CA and PCC
are provided in OryzaExpress.

Integration of the Arabidopsis GEN

Fundamental biological systems in gene expression are con-
served over all species (Mochida and Shinozaki 2010, Shikata
et al. 2010). Comparison of GENs among different species
facilitates identification of conserved and species-specific
gene expression mechanisms. To assist this, data of the
Arabidopsis GEN were collected from the ATTED-II and inte-
grated into OryzaExpress. Arabidopsis genes were mapped in
rice GENs according to information on orthologs between rice
and Arabidopsis. From the InParanoid7 (Ostlund et al. 2010),
we collected 15,743 orthologous genes (10,637 groups) between
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rice and Arabidopsis. Among them, 12,481 predicted ortholo-
gous genes (gene pairs) of rice and Arabidopsis have corres-
ponding microarray probes on the Affymetrix GeneChip Rice
Genome Array and Affymetrix GeneChip Arabidopsis ATH1
Genome Array, respectively. Based on the information on the
orthologs and microarray probes, the Arabidopsis orthologs
were mapped in the rice GENs in OryzaExpress. Using the
developed interface of GEN viewers in OryzaExpress, the
additional information on similarities of expression profiles
between Arabidopsis orthologs could be shown.

We compared a GEN between rice and Arabidopsis to assess
the potential usefulness of the integrated GENs from different
species. We used a GEN which contained transcription factors
for flower development reported to be conserved among
Arabidopsis, tobacco and lily (Chang et al. 2009, Hsu et al.
2010). As well as Arabidopsis genes in flower development,
these rice orthologs comprise a GEN. In the Arabidopsis
GEN, positive correlations (PCC = 0.41–0.84) among the
genes AP1 (At1g69120), AP3 (At3g54340), LFY (At5g61850),
AG (At4g18960), PI (At5g20240) and SEP (At5g15800) were
shown (Supplementary Table S2). Among their rice orthologs,
positive correlations were also observed (PCC = 0.52–0.86).
In addition, whereas the PCC between Arabidopsis genes FT
(At1g65480) and AP1 (At1g69120) was too low to detect
the relationship significantly (PCC = 0.10), the rice orthologs
showed a high PCC value (PCC = 0.87).

Integration of omics information

To browse omics information with GEN, principal omics data
including rice genome annotations were collected and stored
in OryzaExpress (Table 1). The relationships of locus IDs
between RAP-DB and MSU were downloaded from RAP-DB.
MSU loci lacking counterparts in RAP-DB, which were not
included in the above downloaded data, were appended to
the relationships by our perl scripts. Using the relationship of
locus ID between RAP-DB and MSU, omics data in other data-
bases were integrated. The integrated information is as follows:
protein data (UniProt), metabolic pathway data (KEGG and
RiceCyc), gene expression data (GEO and ‘Rice MPSS’) and
annotations of microarray probes in Agilent and Affymetrix
platforms.

Database functions

OryzaExpress provides integrated information on GENs and
annotations in rice. From the page for GEN, information
from integrated annotation data is accessible, and vice versa.
Detailed information in the public (external) databases is also
accessible from hyperlinks in OryzaExpress. The database func-
tions and usage are also described in the help menu in
OryzaExpress.

Fig. 1 An example of GEN. (A) An example of the GEN image. Nodes indicate genes, and edges across nodes show the strength of the
associations (similarities of gene expression profiles). Red and blue edges indicate similar and reciprocal expression patterns, respectively.
Rectangular nodes indicate that the rice gene (probe) has an orthologous gene in Arabidopsis. Black dotted edges indicate similar expression
patterns between Arabidopsis orthologs (rectangular nodes). (B) An example of annotations (descriptions) shown in a node (zoom-in of the
green box in A). By selecting optional settings, Arabidopsis genes (the AGI codes), GO terms and metabolic pathway names can be displayed with
the probe ID and brief annotation in a node.
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Search function on GEN

Information on GENs for each probe (gene) was prepared and
stored in OryzaExpress. The GEN viewer is accessible from the
page for information on each probe. The information on the
probe (query probe) can be searched by probe IDs or annota-
tion keywords of Affymetrix microarray probes (Fig. 2A). A
GEN for a query probe is shown by the hyperlinks in the
retrieved page. The GEN page for a query probe contains an-
notations of the query probe, a GEN viewer, a list and brief
annotations of gene (probe) pairs showing similar/reciprocal
expression profiles, gene expression profiles collected from
GEO, Arabidopsis orthologs and metabolic pathway names
(Fig. 2B).

With an interactive and graphical viewer, a GEN is shown
with nodes (probes) and edges (associations) (Fig. 1). This
viewer allows rotation, zooming in and out, and panning of
the GEN image. A query probe is depicted in the center of
the GEN image by a yellow node. Red and blue edges imply
similarities of expression profiles and reciprocal expression pro-
files between two probes, respectively. Graphs for expression
profiles (levels) of the query and associated probes are also
shown in the GEN page (Fig. 2B). These expression profiles
help us to assess the reliabilities of the GEN. For the query
probe, average and variance of expression levels among samples
are also displayed by histograms in the GEN page. The histo-
grams for average and variance show frequency distributions
for all probes. The bars containing the query probe are high-
lighted in orange. Using the histograms, an outlier probe, such
as an extraordinarily high average or variance, can be easily
distinguished.

Annotations for each probe are shown in the GEN viewer
and page. A brief annotation of each probe pops up by scrolling

the mouse cursor over a node. Detailed annotations are ac-
cessible with internal and external links in the GEN page
(Fig. 2B, D). Further information on metabolic pathways
(KEGG and RiceCyc), Arabidopsis genes (TAIR), Arabidopsis
GENs (ATTED-II) and microarray experiment data (GEO) are
also available through the external links.

Other GENs can be depicted by the setting options. Users
can select the maximum number of edges for a node. In the
current version, the maximum number of edges for a node can
be selected from one to six. Although the DCA index is used as a
default setting, other indices for GEN construction can also be
selected. In addition, GO terms (Gene Ontology Consortium
2000), metabolic pathway names and Arabidopsis ortholog
names for each probe can also be shown in a node as optional
settings. The similarities of expression profiles between
Arabidopsis orthologs (ATTED-II) are shown as black edges in
the GEN.

OryzaExpress has an optional function to eliminate poten-
tial false positives. In the current version of OryzaExpress, false
positives are detected by the PACmin index with a significant
probability of 0.1%. According to this threshold, 89,653,195
probe pairs, which make up 79.8% of the total probe pairs
�0.4 in PCCs, are regarded as false positives. To assess reliability,
we checked a GEN containing the TDR (tapetum degeneration
retardation) gene in pollen development. TDR is expressed in
tapetum at an early stage of pollen development and controls
lipid metabolism for pollen outer wall formation. In a tdr-
defective mutant, expression of >200 genes is affected
(Zhang et al. 2008). Among these genes, two enzyme genes,
LOC_Os01g65590 (galactosyl transferase family protein) and
LOC_Os05g49830 (lipase family protein), show a significant
association from the PCC (data not shown). However, the
two genes have no actual association since they are related to

Table 1 Omics data collected from public databases

Information Database/microarray
platform

URL Notes

Genome annotation RAP-DB http://rapdb.dna.affrc.go.jp/ IRGSP/RAP build 5

MSU Rice Genome
Annotation

http://rice.plantbiology.msu.edu/ Release 6.1

Functional annotations The Gene Ontology http://www.geneontology.org/

UniProtKB/Swiss-Prot http://www.ebi.ac.uk/uniprot/index.html

Metabolic pathways KEGG PATHWAY http://www.genome.jp/kegg/pathway.html

RiceCyc http://www.gramene.org/pathway/ Version 3.0

Microarray platforms Agilent Rice Oligo
Microarray (22 k)

https://earray.chem.agilent.com/earray/ Download from Agilent
eArray

Agilent Rice Oligo
Microarray (44 k)

https://earray.chem.agilent.com/earray/ Download from Agilent
eArray

Affymetrix Rice
Genome Array

http://www.affymetrix.com/estore/browse/products
.jsp?navMode=34000&productId=131497
&navAction=jump&aId=productsNav

Rice Annotations, CSV
format, Release 30

Gene expression data NCBI GEO http://www.ncbi.nlm.nih.gov/geo/

Rice MPSS http://mpss.udel.edu/rice/?
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different metabolic pathways. The false positive relationship
could be removed by PACmin. Although the PACmin used
here is a minimum value of all first-order PACs for a gene
pair, the highest order of PAC should be used to detect false
positives. We applied PACmin as a simple measurement to
reduce calculation time for the highest order of PACs of all
probe pairs.

Search function for omics data

In OryzaExpress, search functions of integrated annotation data
are available by IDs or annotation keywords (Fig. 2C). Gene IDs
of RAP and MSU, accession numbers of GenBank and probe IDs
of three microarray platforms can be used to search annota-
tions from IDs. The detailed information page for each gene
contains information on the locus ID and annotations (RAP-DB
and MSU), accession numbers (GenBank), protein IDs and an-
notations (UniProt), metabolism pathway names and Enzyme
Commission (EC) numbers (KEGG and RiceCyc), probe IDs on
three microarray platforms and the link to gene expression data

(Rice MPSS database) (Fig. 2D). The information on integrated
annotations is shown together with internal and external links.
The integrated annotation page also contains the hyperlink to a
GEN information page (Fig. 2B).

Conclusion and Discussion

What are the applications of OryzaExpress to
different kinds of research?

To overcome the current decentralized omics data and data-
bases in rice, we constructed the web-based and integrated
database OryzaExpress. OryzaExpress provides an overview of
rice GENs and various kinds of omics information including
genome annotations, metabolic pathways and gene expression.
It is the first database to provide information on both GENs and
integrated omics annotations among rice databases. This infor-
mation should help us to grasp gene features, characteristics of
gene expression profiles and their expression control modules

Fig. 2 Database functions in OryzaExpress (A) Search functions for GEN from probe IDs and annotation keywords. (B) GEN information page.
The GEN viewer, annotations of the probe, expression profiles, and histograms for mean and variance of expression levels are shown on the page.
(C) A search function for omics data from IDs and annotation keywords. (D) Detailed information page for a gene (locus). This page includes
annotations integrated from public databases. The original web page in public databases is accessible from the external hyperlinks. A GEN
information page in OryzaExpress is also accessible by the internal link.
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from a variety of perspectives. More detailed information from
public databases is also accessible through hyperlinks on the
pages of OryzaExpress. Researchers can obtain principal omics
data specific to their needs, quickly, using OryzaExpress as a
starting point. This database allows researchers to maximize
productivity by providing the vast amounts of omics data cur-
rently available and should be a powerful database especially for
research on rice by omics approaches in plant science.

OryzaExpress provides the GEN using Affymetrix microarray
data of >600 samples. Notably, it provides a visual network
diagram that can judge the relevance of gene expression
profiles. In addition, OryzaExpress provides GENs with many
kinds of omics information such as GO, metabolic pathways and
comparison of GENs between rice and Arabidopsis. Most omics
information is also available by hyperlinks in OryzaExpress.
However, to exploit the information fully, it still requires add-
itional information on protein–protein interactions. Although
GEN is key for retrieving genes and their expression con-
trol modules, it is based only on mRNA levels. This informa-
tion is insufficient when the target gene is not influenced
at the mRNA level. Information on protein–protein inter-
actions is also important for understanding biological events
at the protein level. Therefore, we are focusing our future work
on launching such protein–protein interaction information in
OryzaExpress.

CA method for GEN construction

This is the first report of GEN construction by CA. CA is a
reasonable method for evaluating similarities of expression pro-
files, since it has been developed to analyze profile data (Yano
et al. 2006, Greenacre 2007). To detect a gene set related to the
same biological process, the up-/down-regulation patterns
across samples, namely expression profiles, are important.
DCAs theoretically reflect the similarity of gene expression pro-
files. Genes with the same expression profiles are located at the
same position in the low dimensional space (Yano et al. 2006).
Genes with similar expression profiles are closely located to
each other. DCA is an appropriate index to evaluate the simila-
rities of gene expression profiles directly without any prior par-
ameters. In addition, CA provides the relationships between
genes and samples (bi-plot), and the information provided by
a bi-plot can facilitate the detection of novel genes related to
the various biological and environmental conditions. Thus the
bi-plot data will be integrated into OryzaExpress.

In addition, CA is preferable for large-scale omics data ana-
lysis, as CA calculations for large-scale data sets is both
time-effective and has a minimal requirement for computation-
al resources (Supplementary Fig. S2). This method is indis-
pensable in current research that involves large-scale omics
data. Data-mining and analyses are generally repeated using
the same large-scale data set to acquire new biological findings.
A time-consuming method with a high-performing computa-
tional system is thus not practical. Although calculation of
DCAs between plots (genes) requires some time, calculation

of DCA for a probe pair could be omitted when the coordinates
of two probes in one dimension (axis) are remarkably different.
That is, such a remarkable difference in the coordinates imme-
diately indicates that the distance between the two genes is
great in space. A vast majority of gene pairs have remarkably
different rather than very close coordinates, due to the limited
number of genes with similar expression profiles, compared
with the total number of genes in the genome. On the other
hand, using PCCs for similarity evaluations between two genes,
no step could be skipped, as the amount of a PCC is not known
until the calculation is complete.

The PCC has been widely used as an index for the similarity
of gene expression profiles. A high PCC indicates that two genes
have very similar expression profiles. In some cases, even genes
with biologically meaningful relationships have a low PCC
(Obayashi et al. 2009). These results may be caused by the
characteristics of the PCC as it is not a statistical method for
profile data analysis. PCC calculation is based on the sum of
products of deviations from the means. The amount of devi-
ation from the mean, therefore, has a considerable effect on the
value of the PCC. However, it is not clear whether the deviations
of two gene expression levels can always reflect the biological
expression profiles. On the other hand, CA calculation uses
expression data directly as the matrix [rows (genes) and col-
umns (samples)]. The gene list detected by CA shows exactly
the considerable similarity of up-/down-regulation profiles
across samples (Supplementary Fig. S1). Although probe
pairs may show high PCCs of around 0.8–0.9, the similarities
of gene expression profiles are not always statistically significant
from DCA. In some cases, gene pairs are given high PCCs unless
the up-/down-regulation patterns across samples (expression
profiles) are actually the same (Supplementary Fig. S3). The
differences between PCCs and DCAs should be examined to
evaluate the applicability of the new index DCA in detail.
However, the current omics data from public databases and
experiments are rapidly expanding, and PCC calculations for
large-scale omics data are notoriously difficult, due to the
long calculation time and large computer memory require-
ments. We thus have to develop novel indices such as DCA
for future large-scale omics analyses.

In our assessment, we found an example where DCA was
effective in detecting biologically meaningful gene pairs. With
a DCA of 0.08 as a low threshold value, which enabled us to
avoid many false positives (data not shown), we detected many
gene pairs in the same reaction of RiceCyc metabolic pathways.
Surprisingly, some gene pairs on>10 metabolic pathways could
not be detected by even the low PCC threshold value of 0.4 that
statistically means a weak positive correlation relationship. For
example, on the pathway ‘aerobic respiration–electron donors
reaction list’, 28 gene pairs were detected only by DCA, and
15 gene pairs only by PCC (Supplementary Table S3), whereas
21 gene pairs were detected by both methods. This result
suggests that DCA and PCC would compensate each other to
discover biologically related gene pairs.
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To grasp the similarities of expression profiles among many
genes simultaneously with DCAs (distances), a 3D image viewer
of plots (genes) in the subspace rather than a GEN viewer helps
us to detect genes (plots) located close to each other. However,
the current version of OryzaExpress has no facility to view a
3D image. We have developed GUI software using Java3D to
perform CA easily and view plots (genes) in the low dimen-
sional subspace. With the data sets of DCAs obtained from
OryzaExpress, a 3D image can be visualized in the software
which allows rotation, zooming in and out, and panning of
the image. Annotation data obtained from OryzaExpress
could also be imported into the software. Users can search
plots (genes) in the 3D image by annotation keywords. In the
low dimensional space, plots (genes) of unknown function
around a gene of known function would be candidates for fur-
ther analysis. The software (beta version) is freely available for
academic research by e-mail request.

Mining of genes with reciprocal expression
profiles

OryzaExpress can be adopted to search genes with reciprocal
expression profiles, although most GEN databases have offered
only positive correlations. A negative PCC has sometimes been
found to be effective in evaluation (Zeng et al. 2010). In a
potato plant overexpressing the sucrose synthase gene, a nega-
tive PCC in gene expression was observed between sucrose
synthase and acid invertase (Whittaker et al. 2010). However,
whether a negative PCC is effective for searching their repressor
or downstream genes is still unclear. Yano et al. (2006) reported
that CA detects genes and samples with reciprocal expression
profiles. Genes with reciprocal expression profiles separate
into positive and negative coordinates of the axes in the low
dimensional space. This suggests that PCCs for coordinates ob-
tained by CA (PCC_CAs) could classify genes with reciprocal
expression profiles. We tested the new PCC_CA index to mine
genes with reciprocal expression profiles. As expected, the
results show a negative PCC_CA, allowing detection of genes
with reciprocal expression profiles (Supplementary Fig. S1).
Although a long calculation time is needed for PCC_CAs, like
PCCs, the combined analysis of CA and PCC_CA could yield a
highly desirable tool.

Detection of false positives in GENs

We applied first-order PACs to detect false positives among
predicted genes with similar expression profiles. This index pro-
vides strength of association of expression profiles between a
gene pair by removing the effect of other genes. PAC has been
proposed as an index for expression similarities (Usadel et al.
2009), and a false positive can be greatly reduced using
first-order PACs to construct GEN (Roessner-Tunali et al.
2003, de la Fuente et al. 2004, Han et al. 2008, Sawada et al.
2009a, Sawada et al. 2009b, Shinozaki and Sakakibara 2009). In
fact, we found approximately 80% false positives among total
gene pairs in the rice GEN.

The highest order of PAC is theoretically desirable to assess
false positives in GENs. In the evaluation of similarities between
genes x and y with the highest order of PAC, the effects of
gene expression profiles of all proves except for genes x and
y could be simultaneously removed. Alternatively, the calcu-
lation of the highest order of PACs for all proves would be
difficult even with large computer resources. We thus need
to develop other efficient indices to mine false positives
in GENs.

Integration of omics annotations

We collected and integrated principal omics annotations of
rice into OryzaExpress, allowing quick access to various anno-
tations from distinct databases. In particular, genome anno-
tations and IDs from different genome annotation projects
can be easily accessed in OryzaExpress. The annotations in
GENs contain various types of information such as metabolic
pathways, GO terms and comparisons of GENs between rice
and Arabidopsis. The integrated annotation data are updated
into OryzaExpress depending on the main public databases
(once or twice a year). It could lead us to promote compre-
hensive systems biology approaches. Recent progress on
genome sequencing via next-generation sequencers should
lead to even more genomic annotations in many model
plants. However, the problem of different IDs and annotations
from individual projects still remains an issue. Construction and
maintenance of an integrated database such as OryzaExpress
are also points for further discussion for maximizing the know-
ledge gained from experimental data and individual public
databases.

In conclusion, we developed the comprehensive rice data-
base OryzaExpress. This database provides both GENs and vari-
ous types of omics information from public and distinct
databases. It also allows us to apply powerful omics approaches
from all perspectives to plant science and leads to systems
biology.

Supplementary data

Supplementary data are available at PCP online.
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